Developing a market for low carbon commercial vehicles and technology

A review of Low Carbon HGV programme

FTA Logistics Carbon Reduction Conference 17th June 2010 Jonathan Murray, Deputy Director Low Carbon Vehicle Partnership

- Drivers for encouraging the take-up of low carbon technologies
- Carbon and fuel savings achievable from commercial vehicles
- □ The challenge of accrediting low carbon technologies
- The role for physical testing and how computer modelling can help
- What is the Low Carbon HGV programme and how HGV fleets can get involved?

Low Carbon Vehicle Partnership

Accelerating a sustainable shift to low carbon vehicles and fuels in the UK

Stimulating opportunities for UK businesses

Road transport accounted for 23.5% of manmade CO2 emissions in 2007 and has been increasing since 1990

Source: DfT

Road freight – Low carbon technologies

□ The Low Carbon Transport: A Greener Future states that

"DfT aims to determine the best incentives – regulation, support for investment or best practice – to encourage greater uptake of lower carbon HGV technologies and help industry achieve significant reductions in fuel consumption and CO2 emissions from HGV operations."

- DfT requested the LowCVP to advise them on how best this might be done.
 - LowCVP undertook the low carbon HGV programme in Dec 2010
 - Established a steering group for the project representing all key stakeholders, including FTA.
 - Aim to provide a mechanism which could be implemented by April

Objective of the low carbon HGV programme

- Develop an objective whole vehicle definition of a low carbon commercial vehicles reflecting different operational requirements which is appropriate for the basis for incentivisation through fiscal or policy measures."
 - Confirm the technologies which should be prioritised in encouraging a reduction in carbon emissions from HGVs.
 - Determine whether it is possible to develop a performance measure or target for HGVs which could be used as well as or instead of incentivising one or more particular technologies.
 - Evaluate options to incentivise low carbon HGVs or selected technologies.

Low carbon HGV work programme has five main themes

low carbon vehicle partnership

Fleet survey shows demand for independent verification of fuel saving claims and need for quick return on investment for fleets

Main Conclusions

- Generally a good understanding of technologies are available in this area.
- Practical experience of using driven by efficiency and regulation
- Doubts over fuel savings claims made – need for independent verification
- Additional cost is a barrier if short payback then will consider – otherwise subsidise.

Operator Fleet Size

Source: AEA Technology

Technologies were assessed through a four stage process for four types of operation

Technology road mapping process

Four applications

Heavy Goods

low carbon vehicle partnership

Inter city delivery

City delivery

Utility

Technology Areas					
Vehicle		Powertrain		Fuel	
Aerodynamics	Fairings	Efficiency	Combustion	Alternatives	Natural gas
	Trailers		Friction		Biofuels
	Spray suppression		Acillaries		Biogas
Rolling	Low Res tyres		Gas Exchange		Electricity
Resistance	Single wide tyres		Waste heat use		Hydrogen
	Auto tyre pressure		Trans/Driveline		
Driver /	Predictive cruise	Alternatives	Fuel cells/Evs		
Control	AMT		Hybrids/ICE		F

Vehicle and powertrain technologies which are likely to be commercially viable by 2020

Technologies delivered 2% fuel savings in the moderate scenario.

Technologies which can deliver more aggressive fuel savings but are unlikely to be commercially viable

the challenging scenario.

ngs in

Comparing CO2 benefit with cost for medium and heavy commercial vehicles reveals application specific trade-offs

Accreditation of low carbon technologies and HGVs

Certification Process

- Designed to be cost effective by combining physical tests and computer modelling
- Requires a range of appropriate robust tests
- Computer model needs to reflect vehicle spec and driver cycle

Methodological framework

- Allows for single or multiple technologies to be fitted to vehicle
- Modelling history allows process to become self

Programme of testing various technologies using different tests to determine sensitivity

<u>Track testing</u> comprised a number of elements

High speed circuit

- Hill circuit
- City circuit
- 1mile straight for coast down
- Requires use of benchmark vehicle

<u>Chassis dynamometer</u>

Variable temperature emission chamber

Can be tailored to duty cycle within reason

High level of confidence in repeatability, and ability to indentify changes in fuel consumption down to ~2%.

low carbon vehicle partnership

A range of mechanisms are under consideration to encourage the uptake of low carbon technologies

- □ Whole vehicle:
 - Fiscal/grant schemes aimed at low emissions vehicles would need to combine with whole vehicle accreditation and buyer information
 - Most focussed on incentivising specific powertrains many stipulate EV or Hybrid
- Technology focussed:
 - ECA could be suitable model for fleet operator incentivisation however only applies to new technology and not to organisations not eligible for tax relief – e.g. LA fleets.
 - Certification schemes e.g. Reduced Pollution Certificate for Trucks and Buses could extend to include other technologies.
 - Linking to VED need means to determine CO2 benefits and individual for each vehicle type and option combination (testing/modelling projects
 - Retrofit technologies tax credit scheme for EV conversion kit

Accreditation of low carbon technologies and trucks could be as early as April 2011

Summary

- Road transport is an important source of carbon dioxide and fuel consumption is a major cost to the transport industry.
 - We need to reduce both.
- □ There are a lot of claims regarding low carbon technologies
 - Clear guidance which is backed up with evidence is needed
- Accreditation process is being developed which will use a combination of physical tests and computer modelling.
 - The aim is to be technology and cost neutral.
 - Moderate low carbon technologies may be commercially viable while technologies deliver more aggressive reductions in carbon may need to be incentivised
 - Could be as early as FY 2011-12
- We are interested in hearing your views and we're looking for HGV operators to get involved.

Thank You!

020 3178 7859 The Low Carbon Vehicle Partnership

secretariat@lowcvp.org.uk

www.lowcvp.org.uk

